Archive for November 2010

Plastisoil to Displace Concrete




I assume that if we have got far enough to talk about it, that it can stand up to wear and tear the way concrete can.  It is still the kind of product that only a city can like and use with careful attention to costs.

Consuming plastic waste is a problem that is best solved in the city before it ends up in landfills and the ocean.  This is at least what appears to be a good stab at the problem and let us hope it stands up.

I think that the consumer would also pay a premium price for this because it will keep underlying soils under patios healthy.  Many yards are concrete zones suppressing border plantings.

Of course, it may encourage roots to demolish such establishments.


'Plastisoil' could mean cleaner rivers and less plastic waste
16:32 November 21, 2010


A new cement-like material that could be used to form sidewalks, bike and jogging paths, driveways and parking lots, may be able to lessen two environmental problems, namely plastic waste and polluted rainwater runoff. The substance is called Plastisoil, and it was developed by Naji Khoury, an assistant professor of civil and environmental engineering at Temple University in Philadelphia. In order to make Plastisoil, discarded polyethylene terephthalate (PET) plastic bottles are pulverized and mixed with soil, and then that mixture is blended with a coarse aggregate and heated. The result is a hard yet non-watertight substance, similar to pervious concrete or porous asphalt.

With traditional concrete and asphalt paving, rainwater stays on the surface and runs into the storm sewers, accumulating oil and other road filth along the way. With pervious surfaces such as Plastisoil, that water is able to go down through them, and into the soil below. This certainly reduces the amount of pollutants entering the rivers, although Khoury and his team at Temple are currently trying to determine if Plastisoil could even serve as a filter, that removed pollutants as the water filtered through.

Khoury said that it uses less energy to produce one ton of Plastisoil than one ton of cement or asphalt, and that it’s less expensive to manufacture than similar products. It takes 30,000 PET bottles to make one ton of the material, although he is hoping to be able to use other types of plastic in the future.


Controled Defects in Graphene




This trick obviously has applications, not least as seam builder for improving the structural capabilities of the material.  Continuous ribbon  production is not too far away and we will have the capacity to produce the most incredible structure we are able to imagine.

As an example, we could reinforce our skulls with an embedded layer that is allows for larger and thinner.  We already have found evidence of just that in the starchild skull.

However, sooner or later this stuff will be simply cheaper than steel.  Then our whole reinforced concrete construction technology can be replaced with a vastly superior product able to do the same job with a fraction of the weight.

The dream of huge airy constructions will become a human reality.


NOVEMBER 18, 2010

Among graphene’s remarkable properties is its roughly 100-GPa tensile strength, which is 40 times greater than the value for steel. That, however, is for defect-free graphene sheets; when formed by chemical vapor deposition, a proven industrial technique, graphene sheets contain crystallites separated by grain boundaries. 


A computational study by Rassin Grantab and Vivek Shenoy at Brown University and Rodney Ruoff at the University of Texas at Austin reveals that graphene sheets with highly misaligned boundaries are actually stronger than slightly misaligned ones. As the image shows, misaligned grain boundaries consist of repeating pairs of 5- and 7-member rings separated by hexagonal rings. In simulations of the stress-strain curves as a function of the misalignment, the researchers found that, surprisingly, tensile strength increases with increasing misalignment angle


Science - Anomalous Strength Characteristics of Tilt Grain Boundaries in Graphene


Graphene in its pristine form is one of the strongest materials tested, but defects influence its strength. Using atomistic calculations, we find that, counter to standard reasoning, graphene sheets with large-angle tilt boundaries that have a high density of defects are as strong as the pristine material and, unexpectedly, are much stronger than those with low-angle boundaries having fewer defects. We show that this trend is not explained by continuum fracture models but can be understood by considering the critical bonds in the strained seven-membered carbon rings that lead to failure; the large-angle boundaries are stronger because they are able to better accommodate these strained rings. Our results provide guidelines for designing growth methods to obtain sheets with strengths close to that of pristine graphene.


In one simulation, a graphene sheet with a boundary angle of 28.7° and strained by 15% resisted stress up to 95 GPa; conceivably, it might be more efficient for researchers to engineer controlled defects into a graphene sheet rather than trying to make a perfect one.

Brain Mirroring Discovery



The question now is to what degree is this true.  Generally we can now map active areas of the brain as a task is taking place.

The interesting experiment is to have two subject been brain scanned while one leads and the other observes without acting, and then after some time does act in imitation.

Just how closely does brain activity mirror the other when this is done?

Simple questions, but if it works even a little bit, we have a powerful tool that right away can be used to support reprogramming and to winkle out abnormalities.  It may even be used to guide the healing of such abnormalities.

They are not be too far of the mark when they say that this is important




A recent paradigm-shattering discovery in neuroscience shows how our minds share actions, emotions, and experience -what we commonly call "the monkey see, monkey do" experience. When we see someone laugh, cry, show disgust, or experience pain, in some sense, we share that emotion. When we see someone in distress, we share that distress. When we see a great actor, musician or sportsperson perform at the peak of their abilities, it can feel like we are experiencing just something of what they are experiencing.

Only recently, however, with the discover of mirror neurons, has it become clear just how this powerful sharing of experience is realized within the human brain. In the early 1990's Giacomo Rizzolatti and his colleagues at the University of Parma discovered that some neurons had an amazing property: they responded not only when a subject performed a given action, but also when the subject observed someone else performing that same action.

These results had a deep impact on cognitive neuroscience, leading the the world's leading experts to predict that 'mirror  neurons would do for psychology what DNA did for biology'. 

Vilayanur Ramachandran is a neurologist at the University of California-San Diego and co-author of Phantoms in the Brain: Probing the Mysteries of the Human Mind writes that "Giacomo Rizzolatti at the University of Parma has elegantly explored the properties of neurons - the so-called "mirror" neurons, or "monkey see, monkey do" neurons. His research indicates that any given cell in this region will fire when a test monkey performs a single, highly specific action with its hand: pulling, pushing, tugging, picking up, grasping, etc. In addition, it appears that different neurons fire in response to different actions."

The astonishing fact is that any given mirror neuron will also fire when the monkey in question observes another monkey (or even the experimenter) performing the same action. "With knowledge of these neurons, you have the basis for understanding a host of very enigmatic aspects of the human mind: imitation learning, intentionality, "mind reading," empathy -- even the evolution of language." Ramachandran writes.
"Anytime you watch someone else doing something (or even starting to do something), the corresponding mirror neuron might fire in your brain, thereby allowing you to "read" and understand another's intentions, and thus to develop a sophisticated "theory of other minds."

Mirror neurons may also help explain the emergence of language, a problem that has puzzled scholars since the time of Charles Darwin, he adds.

"Is language ability based on a specially purposed language organ that emerged suddenly 'out of the blue,' as suggested by Noam Chomsky and his disciples? Or did language evolve from an earlier, gesture-based protolanguage? No one knows for sure, but a key piece of the puzzle is Rizzolatti's observation that the ventral premotor area may be a homologue of "Broca's area" -- a brain center associated with the expressive and syntactic aspects of language. Rizzolatti and Michael Arbib of the University of Southern California suggest that mirror neurons may also be involved in miming lip and tongue movements, an ability that may present the crucial missing link between vision and language."


To test his idea, Ramachandran tested four Broca's aphasia patients -- individuals with lesions in their Broca's areas. He presented them with the sound of the syllable "da," spliced to a videotape of a person whose lips were actually producing the sound "ba." Normally, people hear the "da" as "ba" -- the so-called "McGurk effect" -- because vision dominates over hearing. To his surprise, he writes, "we found that the Broca's patients did not experience this illusion; they heard the syllable correctly as 'da.' Even though their lesions were located in the left frontal region of their brains, they had a visual problem -- they ignored the lip movements. Our patients also had great difficulty with simple lip reading. This experiment provides a link between Rizzolatti's mirror neurons and the evolution of human language, and thus it calls into question the strictly modular view of language, which is currently popular."


Based on his research, Ramachandran predicted that mirror neurons will do for psychology what DNA did for biology: "they will provide a unifying framework and possibly even explain a host of mental abilities that have hitherto remained mysterious and inaccessible to experiments."


Casey Kazan
Image credit: David Sambells


Aging Directly Reversed



The day I posted my item on the very real possibility of the historical existence of an elixir of life and that it should be in our sights with our present knowledge; here we have the first demonstrated incidence of actual age reversal.

The initial protocol is obvious.  A regimen of sufficient telomerase enzyme will apparently do the trick.  Of course, there are details to work out and the usual fears to overcome and work around.  I do not think that the obvious problems are insurmountable.

First of, we now have the MIT nanogold protocol for eliminating cancer in the body.  There is no point in trying to reverse age when the body is losing a battle with cancer.  See my post on the subject.

Secondly, senescent cells will simply be replaced over time by younger cells in a rejuvenated body.

Thirdly a restored body will also have a restored metabolism and immune system and will be well able to deal with mechanical restoration issues and suppress normal cancer issues.

There will still be plenty of issues and the second item makes that rather clear.  Yet we are now very much pursuing what looks to be an attainable goal.  The effect has just proven itself real.  Surviving to age 100 in excellent health, even if it means dropping dead the day after is superior to presently available outcomes.

Harvard scientists reverse the ageing process in mice – now for humans


Harvard scientists were surprised that they saw a dramatic reversal, not just a slowing down, of the ageing in mice. Now they believe they might be able to regenerate human organs


In mice, reactivating the enzyme telomerase led to the repair of damaged tissues and reversed the signs of ageing. Photograph: Robert F. Bukaty/AP


Scientists claim to be a step closer to reversing the ageing process after rejuvenating worn out organs in elderly mice. The experimental treatment developed by researchers at Harvard Medical School turned weak and feeble old mice into healthy animals by regenerating their aged bodies.


The surprise recovery of the animals has raised hopes among scientists that it may be possible to achieve a similar feat in humans – or at least to slow down the ageing process.

An anti-ageing therapy could have a dramatic impact on public health by reducing the burden of age-related health problems, such as dementia, stroke and heart disease, and prolonging the quality of life for an increasingly aged population.

"What we saw in these animals was not a slowing down or stabilisation of the ageing process. We saw a dramatic reversal – and that was unexpected," said Ronald DePinho, who led the study, which was published in the journal Nature.


"This could lead to strategies that enhance the regenerative potential of organs as individuals age and so increase their quality of life. Whether it serves to increase longevity is a question we are not yet in a position to answer."

The ageing process is poorly understood, but scientists know it is caused by many factors. Highly reactive particles called free radicals are made naturally in the body and cause damage to cells, while smoking, ultraviolet light and other environmental factors contribute to ageing.

The Harvard group focused on a process called telomere shortening. Most cells in the body contain 23 pairs of chromosomes, which carry our DNA. At the ends of each chromosome is a protective cap called a telomere. Each time a cell divides, the telomeres are snipped shorter, until eventually they stop working and the cell dies or goes into a suspended state called "senescence". The process is behind much of the wear and tear associated with ageing.

At Harvard, they bred genetically manipulated mice that lacked an enzyme called telomerase that stops telomeres getting shorter. Without the enzyme, the mice aged prematurely and suffered ailments, including a poor sense of smell, smaller brain size, infertility and damaged intestines and spleens. But when DePinho gave the mice injections to reactivate the enzyme, it repaired the damaged tissues and reversed the signs of ageing.

"These were severely aged animals, but after a month of treatment they showed a substantial restoration, including the growth of new neurons in their brains," said DePinho.

Repeating the trick in humans will be more difficult. Mice make telomerase throughout their lives, but the enzyme is switched off in adult humans, an evolutionary compromise that stops cells growing out of control and turning into cancer. Raising levels of telomerase in people might slow the ageing process, but it makes the risk of cancer soar.
DePinho said the treatment might be safe in humans if it were given periodically and only to younger people who do not have tiny clumps of cancer cells already living, unnoticed, in their bodies.

David Kipling, who studies ageing at Cardiff University, said: "The goal for human tissue 'rejuvenation' would be to remove senescent cells, or else compensate for the deleterious effects they have on tissues and organs. Although this is a fascinating study, it must be remembered that mice are not little men, particularly with regard to their telomeres, and it remains unclear whether a similar telomerase reactivation in adult humans would lead to the removal of senescent cells."

Lynne Cox, a biochemist at Oxford University, said the study was "extremely important" and "provides proof of principle that short-term treatment to restore telomerase in adults already showing age-related tissue degeneration can rejuvenate aged tissues and restore physiological function."

DePinho said none of Harvard's mice developed cancer after the treatment. The team is now investigating whether it extends the lifespan of mice or enables them to live healthier lives into old age.

Tom Kirkwood, director of the Institute for Ageing and Health at Newcastle University, said: "The key question is what might this mean for human therapies against age-related diseases? While there is some evidence that telomere erosion contributes to age-associated human pathology, it is surely not the only, or even dominant, cause, as it appears to be in mice engineered to lack telomerase. Furthermore, there is the ever-present anxiety that telomerase reactivation is a hallmark of most human cancers."


Can taking a 'Telomerase' enzyme pill reduce speed of aging?

Date: Mon Apr 3 16:25:18 2000

Posted By: 
Michael Onken, MadSci Admin
Area of science: Cell Biology
First off, the subject of free radicals has been covered extensively in past posts which can be accessed from our search engine at: http:// www.madsci.org/MS_search.html. Now, on to telomeres, telomerase, and aging:

Telomeres are stretches of repetitive DNA at the ends of chromosomes that allow faithful DNA replication by acting as primers for lagging-strand synthesis. As mentioned in the preceding link, each replication shortens the telomeres, until eventually they disappear and subsequent replications begin to chew away at the ends of the chromosomes. To counteract this loss, replicating cells contain an enzyme calledtelomerase which re-lengthens the telomeres between replications. The importance of telomerase came after years of frustration by researchers who found that several cell lines stopped growing in culture after a certain number of passages (divisions). They found that cells with activated telomerase could grow in culture indefinitely. This finding was hyped by the non-scientific media as a potential Fountain of Youth, and stories of telomerase allowing people to live forever and never age quickly sank into popular lore.

Meanwhile, researchers continued to examine this phenomenon, and found that the activity of telomerase and the length of the telomeres were intricately tied to programmed cell death (apoptosis), in so far as cells monitor their telomere lengths and commit suicide if they sense that they've replicated too many times. As it happens, this is very important in tissues like the skin and the lining of the gut, where new cells are constantly made as older cells slough off and die. If the older cells don't die but keep dividing instead, the result is more cells in the area than you want in a structure commonly called a tumor. If these cells find a way out of their tumor, they can become cancerous. In fact, "immortalization" was one of the first hallmarks described for cancerous cells, and is vital for tumor formation. The body normally prevents this by shutting off the telomerase gene in cells that are destined to be sloughed.

So, giving someone activated telomerase, or altering their endogenous telomerase genes to make them constitutively active would be a really bad idea. In fact, all of the cells in your body that are supposed to be proliferative express sufficient telomerase to last you throughout your lifetime. It is worth noting then that aging is not caused by your cells wearing out (since they don't), but is caused by the connective matrices (mostly collagen and elastin) around the cells wearing out.

Plastisoil to Displace Concrete




I assume that if we have got far enough to talk about it, that it can stand up to wear and tear the way concrete can.  It is still the kind of product that only a city can like and use with careful attention to costs.

Consuming plastic waste is a problem that is best solved in the city before it ends up in landfills and the ocean.  This is at least what appears to be a good stab at the problem and let us hope it stands up.

I think that the consumer would also pay a premium price for this because it will keep underlying soils under patios healthy.  Many yards are concrete zones suppressing border plantings.

Of course, it may encourage roots to demolish such establishments.


'Plastisoil' could mean cleaner rivers and less plastic waste
16:32 November 21, 2010


A new cement-like material that could be used to form sidewalks, bike and jogging paths, driveways and parking lots, may be able to lessen two environmental problems, namely plastic waste and polluted rainwater runoff. The substance is called Plastisoil, and it was developed by Naji Khoury, an assistant professor of civil and environmental engineering at Temple University in Philadelphia. In order to make Plastisoil, discarded polyethylene terephthalate (PET) plastic bottles are pulverized and mixed with soil, and then that mixture is blended with a coarse aggregate and heated. The result is a hard yet non-watertight substance, similar to pervious concrete or porous asphalt.

With traditional concrete and asphalt paving, rainwater stays on the surface and runs into the storm sewers, accumulating oil and other road filth along the way. With pervious surfaces such as Plastisoil, that water is able to go down through them, and into the soil below. This certainly reduces the amount of pollutants entering the rivers, although Khoury and his team at Temple are currently trying to determine if Plastisoil could even serve as a filter, that removed pollutants as the water filtered through.

Khoury said that it uses less energy to produce one ton of Plastisoil than one ton of cement or asphalt, and that it’s less expensive to manufacture than similar products. It takes 30,000 PET bottles to make one ton of the material, although he is hoping to be able to use other types of plastic in the future.


Controled Defects in Graphene




This trick obviously has applications, not least as seam builder for improving the structural capabilities of the material.  Continuous ribbon  production is not too far away and we will have the capacity to produce the most incredible structure we are able to imagine.

As an example, we could reinforce our skulls with an embedded layer that is allows for larger and thinner.  We already have found evidence of just that in the starchild skull.

However, sooner or later this stuff will be simply cheaper than steel.  Then our whole reinforced concrete construction technology can be replaced with a vastly superior product able to do the same job with a fraction of the weight.

The dream of huge airy constructions will become a human reality.


NOVEMBER 18, 2010

Among graphene’s remarkable properties is its roughly 100-GPa tensile strength, which is 40 times greater than the value for steel. That, however, is for defect-free graphene sheets; when formed by chemical vapor deposition, a proven industrial technique, graphene sheets contain crystallites separated by grain boundaries. 


A computational study by Rassin Grantab and Vivek Shenoy at Brown University and Rodney Ruoff at the University of Texas at Austin reveals that graphene sheets with highly misaligned boundaries are actually stronger than slightly misaligned ones. As the image shows, misaligned grain boundaries consist of repeating pairs of 5- and 7-member rings separated by hexagonal rings. In simulations of the stress-strain curves as a function of the misalignment, the researchers found that, surprisingly, tensile strength increases with increasing misalignment angle


Science - Anomalous Strength Characteristics of Tilt Grain Boundaries in Graphene


Graphene in its pristine form is one of the strongest materials tested, but defects influence its strength. Using atomistic calculations, we find that, counter to standard reasoning, graphene sheets with large-angle tilt boundaries that have a high density of defects are as strong as the pristine material and, unexpectedly, are much stronger than those with low-angle boundaries having fewer defects. We show that this trend is not explained by continuum fracture models but can be understood by considering the critical bonds in the strained seven-membered carbon rings that lead to failure; the large-angle boundaries are stronger because they are able to better accommodate these strained rings. Our results provide guidelines for designing growth methods to obtain sheets with strengths close to that of pristine graphene.


In one simulation, a graphene sheet with a boundary angle of 28.7° and strained by 15% resisted stress up to 95 GPa; conceivably, it might be more efficient for researchers to engineer controlled defects into a graphene sheet rather than trying to make a perfect one.

Brain Mirroring Discovery



The question now is to what degree is this true.  Generally we can now map active areas of the brain as a task is taking place.

The interesting experiment is to have two subject been brain scanned while one leads and the other observes without acting, and then after some time does act in imitation.

Just how closely does brain activity mirror the other when this is done?

Simple questions, but if it works even a little bit, we have a powerful tool that right away can be used to support reprogramming and to winkle out abnormalities.  It may even be used to guide the healing of such abnormalities.

They are not be too far of the mark when they say that this is important




A recent paradigm-shattering discovery in neuroscience shows how our minds share actions, emotions, and experience -what we commonly call "the monkey see, monkey do" experience. When we see someone laugh, cry, show disgust, or experience pain, in some sense, we share that emotion. When we see someone in distress, we share that distress. When we see a great actor, musician or sportsperson perform at the peak of their abilities, it can feel like we are experiencing just something of what they are experiencing.

Only recently, however, with the discover of mirror neurons, has it become clear just how this powerful sharing of experience is realized within the human brain. In the early 1990's Giacomo Rizzolatti and his colleagues at the University of Parma discovered that some neurons had an amazing property: they responded not only when a subject performed a given action, but also when the subject observed someone else performing that same action.

These results had a deep impact on cognitive neuroscience, leading the the world's leading experts to predict that 'mirror  neurons would do for psychology what DNA did for biology'. 

Vilayanur Ramachandran is a neurologist at the University of California-San Diego and co-author of Phantoms in the Brain: Probing the Mysteries of the Human Mind writes that "Giacomo Rizzolatti at the University of Parma has elegantly explored the properties of neurons - the so-called "mirror" neurons, or "monkey see, monkey do" neurons. His research indicates that any given cell in this region will fire when a test monkey performs a single, highly specific action with its hand: pulling, pushing, tugging, picking up, grasping, etc. In addition, it appears that different neurons fire in response to different actions."

The astonishing fact is that any given mirror neuron will also fire when the monkey in question observes another monkey (or even the experimenter) performing the same action. "With knowledge of these neurons, you have the basis for understanding a host of very enigmatic aspects of the human mind: imitation learning, intentionality, "mind reading," empathy -- even the evolution of language." Ramachandran writes.
"Anytime you watch someone else doing something (or even starting to do something), the corresponding mirror neuron might fire in your brain, thereby allowing you to "read" and understand another's intentions, and thus to develop a sophisticated "theory of other minds."

Mirror neurons may also help explain the emergence of language, a problem that has puzzled scholars since the time of Charles Darwin, he adds.

"Is language ability based on a specially purposed language organ that emerged suddenly 'out of the blue,' as suggested by Noam Chomsky and his disciples? Or did language evolve from an earlier, gesture-based protolanguage? No one knows for sure, but a key piece of the puzzle is Rizzolatti's observation that the ventral premotor area may be a homologue of "Broca's area" -- a brain center associated with the expressive and syntactic aspects of language. Rizzolatti and Michael Arbib of the University of Southern California suggest that mirror neurons may also be involved in miming lip and tongue movements, an ability that may present the crucial missing link between vision and language."


To test his idea, Ramachandran tested four Broca's aphasia patients -- individuals with lesions in their Broca's areas. He presented them with the sound of the syllable "da," spliced to a videotape of a person whose lips were actually producing the sound "ba." Normally, people hear the "da" as "ba" -- the so-called "McGurk effect" -- because vision dominates over hearing. To his surprise, he writes, "we found that the Broca's patients did not experience this illusion; they heard the syllable correctly as 'da.' Even though their lesions were located in the left frontal region of their brains, they had a visual problem -- they ignored the lip movements. Our patients also had great difficulty with simple lip reading. This experiment provides a link between Rizzolatti's mirror neurons and the evolution of human language, and thus it calls into question the strictly modular view of language, which is currently popular."


Based on his research, Ramachandran predicted that mirror neurons will do for psychology what DNA did for biology: "they will provide a unifying framework and possibly even explain a host of mental abilities that have hitherto remained mysterious and inaccessible to experiments."


Casey Kazan
Image credit: David Sambells


Aging Directly Reversed



The day I posted my item on the very real possibility of the historical existence of an elixir of life and that it should be in our sights with our present knowledge; here we have the first demonstrated incidence of actual age reversal.

The initial protocol is obvious.  A regimen of sufficient telomerase enzyme will apparently do the trick.  Of course, there are details to work out and the usual fears to overcome and work around.  I do not think that the obvious problems are insurmountable.

First of, we now have the MIT nanogold protocol for eliminating cancer in the body.  There is no point in trying to reverse age when the body is losing a battle with cancer.  See my post on the subject.

Secondly, senescent cells will simply be replaced over time by younger cells in a rejuvenated body.

Thirdly a restored body will also have a restored metabolism and immune system and will be well able to deal with mechanical restoration issues and suppress normal cancer issues.

There will still be plenty of issues and the second item makes that rather clear.  Yet we are now very much pursuing what looks to be an attainable goal.  The effect has just proven itself real.  Surviving to age 100 in excellent health, even if it means dropping dead the day after is superior to presently available outcomes.

Harvard scientists reverse the ageing process in mice – now for humans


Harvard scientists were surprised that they saw a dramatic reversal, not just a slowing down, of the ageing in mice. Now they believe they might be able to regenerate human organs


In mice, reactivating the enzyme telomerase led to the repair of damaged tissues and reversed the signs of ageing. Photograph: Robert F. Bukaty/AP


Scientists claim to be a step closer to reversing the ageing process after rejuvenating worn out organs in elderly mice. The experimental treatment developed by researchers at Harvard Medical School turned weak and feeble old mice into healthy animals by regenerating their aged bodies.


The surprise recovery of the animals has raised hopes among scientists that it may be possible to achieve a similar feat in humans – or at least to slow down the ageing process.

An anti-ageing therapy could have a dramatic impact on public health by reducing the burden of age-related health problems, such as dementia, stroke and heart disease, and prolonging the quality of life for an increasingly aged population.

"What we saw in these animals was not a slowing down or stabilisation of the ageing process. We saw a dramatic reversal – and that was unexpected," said Ronald DePinho, who led the study, which was published in the journal Nature.


"This could lead to strategies that enhance the regenerative potential of organs as individuals age and so increase their quality of life. Whether it serves to increase longevity is a question we are not yet in a position to answer."

The ageing process is poorly understood, but scientists know it is caused by many factors. Highly reactive particles called free radicals are made naturally in the body and cause damage to cells, while smoking, ultraviolet light and other environmental factors contribute to ageing.

The Harvard group focused on a process called telomere shortening. Most cells in the body contain 23 pairs of chromosomes, which carry our DNA. At the ends of each chromosome is a protective cap called a telomere. Each time a cell divides, the telomeres are snipped shorter, until eventually they stop working and the cell dies or goes into a suspended state called "senescence". The process is behind much of the wear and tear associated with ageing.

At Harvard, they bred genetically manipulated mice that lacked an enzyme called telomerase that stops telomeres getting shorter. Without the enzyme, the mice aged prematurely and suffered ailments, including a poor sense of smell, smaller brain size, infertility and damaged intestines and spleens. But when DePinho gave the mice injections to reactivate the enzyme, it repaired the damaged tissues and reversed the signs of ageing.

"These were severely aged animals, but after a month of treatment they showed a substantial restoration, including the growth of new neurons in their brains," said DePinho.

Repeating the trick in humans will be more difficult. Mice make telomerase throughout their lives, but the enzyme is switched off in adult humans, an evolutionary compromise that stops cells growing out of control and turning into cancer. Raising levels of telomerase in people might slow the ageing process, but it makes the risk of cancer soar.
DePinho said the treatment might be safe in humans if it were given periodically and only to younger people who do not have tiny clumps of cancer cells already living, unnoticed, in their bodies.

David Kipling, who studies ageing at Cardiff University, said: "The goal for human tissue 'rejuvenation' would be to remove senescent cells, or else compensate for the deleterious effects they have on tissues and organs. Although this is a fascinating study, it must be remembered that mice are not little men, particularly with regard to their telomeres, and it remains unclear whether a similar telomerase reactivation in adult humans would lead to the removal of senescent cells."

Lynne Cox, a biochemist at Oxford University, said the study was "extremely important" and "provides proof of principle that short-term treatment to restore telomerase in adults already showing age-related tissue degeneration can rejuvenate aged tissues and restore physiological function."

DePinho said none of Harvard's mice developed cancer after the treatment. The team is now investigating whether it extends the lifespan of mice or enables them to live healthier lives into old age.

Tom Kirkwood, director of the Institute for Ageing and Health at Newcastle University, said: "The key question is what might this mean for human therapies against age-related diseases? While there is some evidence that telomere erosion contributes to age-associated human pathology, it is surely not the only, or even dominant, cause, as it appears to be in mice engineered to lack telomerase. Furthermore, there is the ever-present anxiety that telomerase reactivation is a hallmark of most human cancers."


Can taking a 'Telomerase' enzyme pill reduce speed of aging?

Date: Mon Apr 3 16:25:18 2000

Posted By: 
Michael Onken, MadSci Admin
Area of science: Cell Biology
First off, the subject of free radicals has been covered extensively in past posts which can be accessed from our search engine at: http:// www.madsci.org/MS_search.html. Now, on to telomeres, telomerase, and aging:

Telomeres are stretches of repetitive DNA at the ends of chromosomes that allow faithful DNA replication by acting as primers for lagging-strand synthesis. As mentioned in the preceding link, each replication shortens the telomeres, until eventually they disappear and subsequent replications begin to chew away at the ends of the chromosomes. To counteract this loss, replicating cells contain an enzyme calledtelomerase which re-lengthens the telomeres between replications. The importance of telomerase came after years of frustration by researchers who found that several cell lines stopped growing in culture after a certain number of passages (divisions). They found that cells with activated telomerase could grow in culture indefinitely. This finding was hyped by the non-scientific media as a potential Fountain of Youth, and stories of telomerase allowing people to live forever and never age quickly sank into popular lore.

Meanwhile, researchers continued to examine this phenomenon, and found that the activity of telomerase and the length of the telomeres were intricately tied to programmed cell death (apoptosis), in so far as cells monitor their telomere lengths and commit suicide if they sense that they've replicated too many times. As it happens, this is very important in tissues like the skin and the lining of the gut, where new cells are constantly made as older cells slough off and die. If the older cells don't die but keep dividing instead, the result is more cells in the area than you want in a structure commonly called a tumor. If these cells find a way out of their tumor, they can become cancerous. In fact, "immortalization" was one of the first hallmarks described for cancerous cells, and is vital for tumor formation. The body normally prevents this by shutting off the telomerase gene in cells that are destined to be sloughed.

So, giving someone activated telomerase, or altering their endogenous telomerase genes to make them constitutively active would be a really bad idea. In fact, all of the cells in your body that are supposed to be proliferative express sufficient telomerase to last you throughout your lifetime. It is worth noting then that aging is not caused by your cells wearing out (since they don't), but is caused by the connective matrices (mostly collagen and elastin) around the cells wearing out.