Thorium Nuclear Potential







I have posted before on the use of thorium as a fuel.   This article outlines the history behind the slow uptake of the thorium potential.  Yet that is been overcome in India and elsewhere.  So though a US program would be welcome it is likely not necessary.


Uranium got the early nod because of weaponization and high grade uranium ores available.  Both reasons are now hugely diminished.  More important to all is that a thorium fuel cycle is able to help consume the waste uranium stocks as part of a natural production cycle.  That is the source of the comment on plutonium.  It is safe to say that our worst problems simply are consumed away safely.

So the long term prognosis for thorium is that it will replace the present industry while allowing for a huge expansion.  It will be the natural energy source for grid power feeding major industrial systems and similar applications.

Grid power can be successfully supplied using geothermal, wind and solar with a range of geographical constraints.  Yet industrial applications are usually best supported by dedicated power.  Think aluminum and steel.  They tend to like a constant base load.

We can farm energy many ways, but a population of thirty billion will use fusion mostly and thorium for direct thermal energy.

Obama could kill fossil fuels overnight with a nuclear dash for thorium

If Barack Obama were to marshal America’s vast scientific and strategic resources behind a new Manhattan Project, he might reasonably hope to reinvent the global energy landscape and sketch an end to our dependence on fossil fuels within three to five years.

By Ambrose Evans-Pritchard, International Business Editor

Published: 6:55PM BST 29 Aug 2010




Dr Rubbia says a tonne of the silvery metal produces as much energy as 200 tonnes of uranium, or 3,500,000 tonnes of coal

We could then stop arguing about wind mills, deepwater drilling, IPCC hockey sticks, or strategic reliance on the Kremlin. History will move on fast.

Muddling on with the status quo is not a grown-up policy. The International Energy Agency says the world must invest $26 trillion (£16.7 trillion) over the next 20 years to avert an energy shock. The scramble for scarce fuel is already leading to friction between China, India, and the West.


There is no certain bet in nuclear physics but work by Nobel laureate Carlo Rubbia at CERN (European Organization for Nuclear Research) on the use of thorium as a cheap, clean and safe alternative to uranium in reactors may be the magic bullet we have all been hoping for, though we have barely begun to crack the potential of solar power.

Dr Rubbia says a tonne of the silvery metal – named after the Norse god of thunder, who also gave us Thor’s day or Thursday - produces as much energy as 200 tonnes of uranium, or 3,500,000 tonnes of coal. A mere fistful would light London for a week.

Thorium eats its own hazardous waste. It can even scavenge the plutonium left by uranium reactors, acting as an eco-cleaner. "It’s the Big One," said Kirk Sorensen, a former NASA rocket engineer and now chief nuclear technologist at Teledyne Brown Engineering.

"Once you start looking more closely, it blows your mind away. You can run civilisation on thorium for hundreds of thousands of years, and it’s essentially free. You don’t have to deal with uranium cartels," he said.

Thorium is so common that miners treat it as a nuisance, a radioactive by-product if they try to dig up rare earth metals. The US and Australia are full of the stuff. So are the granite rocks of Cornwall. You do not need much: all is potentially usable as fuel, compared to just 0.7pc for uranium.

After the Manhattan Project, US physicists in the late 1940s were tempted by thorium for use in civil reactors. It has a higher neutron yield per neutron absorbed. It does not require isotope separation, a big cost saving. But by then America needed the plutonium residue from uranium to build bombs.

"They were really going after the weapons," said Professor Egil Lillestol, a world authority on the thorium fuel-cycle at CERN. "It is almost impossible make nuclear weapons out of thorium because it is too difficult to handle. It wouldn’t be worth trying." It emits too many high gamma rays.

You might have thought that thorium reactors were the answer to every dream but when CERN went to the European Commission for development funds in 1999-2000, they were rebuffed.

Brussels turned to its technical experts, who happened to be French because the French dominate the EU’s nuclear industry. "They didn’t want competition because they had made a huge investment in the old technology," he said.

Another decade was lost. It was a sad triumph of vested interests over scientific progress. "We have very little time to waste because the world is running out of fossil fuels. Renewables can’t replace them. Nuclear fusion is not going work for a century, if ever," he said.

The Norwegian group Aker Solutions has bought Dr Rubbia’s patent for the thorium fuel-cycle, and is working on his design for a proton accelerator at its UK operation.

Victoria Ashley, the project manager, said it could lead to a network of pint-sized 600MW reactors that are lodged underground, can supply small grids, and do not require a safety citadel. It will take £2bn to build the first one, and Aker needs £100mn for the next test phase.

The UK has shown little appetite for what it regards as a "huge paradigm shift to a new technology". Too much work and sunk cost has already gone into the next generation of reactors, which have another 60 years of life.

So Aker is looking for tie-ups with the US, Russia, or China. The Indians have their own projects - none yet built - dating from days when they switched to thorium because their weapons programme prompted a uranium ban.

America should have fewer inhibitions than Europe in creating a leapfrog technology. The US allowed its nuclear industry to stagnate after Three Mile Island in 1979.

Anti-nuclear neorosis is at last ebbing. The White House has approved $8bn in loan guarantees for new reactors, yet America has been strangely passive. Where is the superb confidence that put a man on the moon?

A few US pioneers are exploring a truly radical shift to a liquid fuel based on molten-fluoride salts, an idea once pursued by US physicist Alvin Weinberg at Oak Ridge National Lab in Tennessee in the 1960s. The original documents were retrieved by Mr Sorensen.

Moving away from solid fuel may overcome some of thorium’s "idiosyncracies". "You have to use the right machine. You don’t use diesel in a petrol car: you build a diesel engine," said Mr Sorensen.

Thorium-fluoride reactors can operate at atmospheric temperature. "The plants would be much smaller and less expensive. You wouldn’t need those huge containment domes because there’s no pressurized water in the reactor. It’s close-fitting," he said.

Nuclear power could become routine and unthreatening. But first there is the barrier of establishment prejudice.

When Hungarian scientists led by Leo Szilard tried to alert Washington in late 1939 that the Nazis were working on an atomic bomb, they were brushed off with disbelief. Albert Einstein interceded through the Belgian queen mother, eventually getting a personal envoy into the Oval Office.

Roosevelt initially fobbed him off. He listened more closely at a second meeting over breakfast the next day, then made up his mind within minutes. "This needs action," he told his military aide. It was the birth of the Manhattan Project. As a result, the US had an atomic weapon early enough to deter Stalin from going too far in Europe.

The global energy crunch needs equal "action". If it works, Manhattan II could restore American optimism and strategic leadership at a stroke: if not, it is a boost for US science and surely a more fruitful way to pull the US out of perma-slump than scattershot stimulus.
Even better, team up with China and do it together, for all our sakes.